41 research outputs found

    The Efficient Evaluation of the Hypergeometric Function of a Matrix Argument

    Full text link
    We present new algorithms that efficiently approximate the hypergeometric function of a matrix argument through its expansion as a series of Jack functions. Our algorithms exploit the combinatorial properties of the Jack function, and have complexity that is only linear in the size of the matrix.Comment: 14 pages, 3 figure

    Eigenvalue distributions of beta-Wishart matrices

    Get PDF
    We derive explicit expressions for the distributions of the extreme eigenvalues of the Beta-Wishart random matrices in terms of the hypergeometric function of a matrix argument. These results generalize the classical results for the real (β = 1), complex (β = 2), and quaternion (β = 4) Wishart matrices to any β > 0

    Computing with rational symmetric functions and applications to invariant theory and PI-algebras

    Get PDF
    Let the formal power series f in d variables with coefficients in an arbitrary field be a symmetric function decomposed as a series of Schur functions, and let f be a rational function whose denominator is a product of binomials of the form (1 - monomial). We use a classical combinatorial method of Elliott of 1903 further developed in the Partition Analysis of MacMahon in 1916 to compute the generating function of the multiplicities (i.e., the coefficients) of the Schur functions in the expression of f. It is a rational function with denominator of a similar form as f. We apply the method to several problems on symmetric algebras, as well as problems in classical invariant theory, algebras with polynomial identities, and noncommutative invariant theory.Comment: 37 page

    Accurate and Efficient Expression Evaluation and Linear Algebra

    Full text link
    We survey and unify recent results on the existence of accurate algorithms for evaluating multivariate polynomials, and more generally for accurate numerical linear algebra with structured matrices. By "accurate" we mean that the computed answer has relative error less than 1, i.e., has some correct leading digits. We also address efficiency, by which we mean algorithms that run in polynomial time in the size of the input. Our results will depend strongly on the model of arithmetic: Most of our results will use the so-called Traditional Model (TM). We give a set of necessary and sufficient conditions to decide whether a high accuracy algorithm exists in the TM, and describe progress toward a decision procedure that will take any problem and provide either a high accuracy algorithm or a proof that none exists. When no accurate algorithm exists in the TM, it is natural to extend the set of available accurate operations by a library of additional operations, such as x+y+zx+y+z, dot products, or indeed any enumerable set which could then be used to build further accurate algorithms. We show how our accurate algorithms and decision procedure for finding them extend to this case. Finally, we address other models of arithmetic, and the relationship between (im)possibility in the TM and (in)efficient algorithms operating on numbers represented as bit strings.Comment: 49 pages, 6 figures, 1 tabl

    Accurate SVDs of weakly diagonally dominant M-matrices

    Full text link

    Bidiagonal decompositions of Vandermonde-type matrices of arbitrary rank

    Get PDF
    We present a method to derive new explicit expressions for bidiagonal decompositions of Vandermonde and related matrices such as the (q-, h-) Bernstein-Vandermonde ones, among others. These results generalize the existing expressions for nonsingular matrices to matrices of arbitrary rank. For totally nonnegative matrices of the above classes, the new decompositions can be computed efficiently and to high relative accuracy componentwise in floating point arithmetic. In turn, matrix computations (e.g., eigenvalue computation) can also be performed efficiently and to high relative accuracy

    Introduction to Numerical Methods

    No full text
    The focus of this course is on numerical linear algebra and numerical methods for solving ordinary differential equations. Topics include linear systems of equations, least square problems, eigenvalue problems, and singular value problems

    Accurate Computations with Totally Nonnegative Matrices

    No full text
    corecore